• Opening Times: Mon - Sat 8.00 - 18.00
+905076532450 info@energco.com
Metro 34 İKİTELLİ, Istanbul, Turkey

Category: Environment

13 posts

GEM’s website covers all grid-scale solar and wind power plants around the world, while providing data on more than 18,000 operations and planned wind power projects in 144 countries, as well as about 8,000 operations and planned solar projects in 148 countries.

According to the data published by GEM, Turkey ranks 12th among the countries with the most wind power plants with a capacity of 10 MW and above in operation, while it ranks 16th among countries with a solar energy capacity of 20 MW and above.

The Global Wind Power Tracker (GWPT) lists 13,263 wind farms in operation producing 681.4 GW of electricity in 144 countries, and 5,235 potential projects that will generate an additional 882.0 GW of electricity. The countries with the most wind project capacity in operation are:

  • China (261.2 GW)
  • USA (127.3 GW)
  • Germany (39.6 GW)
  • Spain (26.8 GW)
  • India (23.7 GW)

The Global Solar Power Tracker (GSPT) lists 5,190 solar projects in operations generating 298.7 GW in 148 countries, and an additional 3,551 potential projects to generate 474.9 GW. Grid-scale solar accounts for about 65 percent of total global solar capacity, with the remaining 35 percent being residential and commercial facilities. The countries with the largest solar project capacity in operation are:

  • China (103.3 GW)
  • USA (43.4 GW)
  • India (29.0 GW)
  • Vietnam (11.3 GW)
  • Mexico (10.5 GW)

    Ingrid Behrsin, Project Manager for GEM’s Global Wind Energy Tracker, said: “Capturing the full scope of solar and wind farms established worldwide is critical to measuring progress towards the energy transition. With open-access project-level data like this, we are now in a much stronger position to monitor how countries are performing against their self-specified renewable energy targets.” she says.

The world’s first high-altitude floating solar power plant continues to generate power above the lake in the Swiss Alps. This plant produces 50 percent more energy than those whose panels are found in lowland areas.

The solar power plant in Lac des Toules consists of 1,400 panels placed on 36 floating structures made of aluminum and polyethylene plastic fixed to the bottom of the lake.

Production of 800,000 kWh per year

“This pilot project generates 800,000 kWh per year, corresponding to the [needs] of 220 households,” says Maxime Ramstein, Project Manager at Romande Energie.

The mountainous conditions at an altitude of 1,810 meters above sea level make the sun’s rays stronger. The solar power plant is installed in a reservoir and not in a natural lake, which limits its environmental impact.

The technology found in the floating power plant is also an important part of the photovoltaic industry worldwide.

Ramstein also says that the problem of icing caused by cold weather is solved by draining the reserves that are filled due to melting snow in the spring and summer months.

The European Commission aims to make a large-scale solar power breakthrough and stimulate Europe’s solar industry accordingly.

According to the plan, a package of proposals will be published next week in order to reduce the dependency of member states on Russia. “Solar energy and heat are key to gradually end the EU’s dependence on Russian gas,” the draft text states.

Costs of solar panel cells have dropped more than 80 percent over the past decade, but the technology produced only 5 percent of EU electricity in 2020. The share of solar energy in heat production was only 1.5 percent.

With this plan, the “European Solar Roofs Initiative” will be launched against the risk of gas-fired electricity and heating cuts in homes, offices, shops, and factories.

All institutions will be required to take steps within a year

Ilan targets the roofs of institutional buildings of EU and national governments in the first place. These institutions will be required to take steps to use solar panels within a year.

This will force countries to use EU funds, launch support programs for roof panels and install solar in all eligible public buildings by 2025.

Another part of the plan is to bring governments and educational institutions together to focus on developing the competencies and skills of solar industry workers. To do this, create an “EU Solar Industry Alliance” and support manufacturing investments. Use the EU budget and the carbon market “innovation fund” for this support.

There are about 14 planned large-scale solar power generation projects in Europe, but some require billions of euros in financing to get them to market.

Chinese competition hinders the development of industry in Europe

China provided 75 percent of EU solar panel imports in 2020. Despite the EU applying anti-dumping and anti-subsidy controls to solar panels from China between 2013 and 2018, Europe is having a hard time competing with China with its own large-scale factories.

EU Greens MP Michael Bloss urges Brussels to get involved using legal means rather than voluntary schemes:

“Solar energy conversion has never been discussed in concrete terms. For example, new buildings may be legally required to have solar roofs on flat roofs, public buildings and supermarkets in Europe.”

The draft plan will also fine-tune EU law, accelerating the permitting period for renewable energy projects.

Scientists who have been working for decades to reduce dependence on fossil fuels and produce low-carbon energy are looking for solutions by creating an “artificial sun” in the world with nuclear fusion experiments.

Scientists are trying to combine hydrogen atoms and create helium by fusion by sending 140,000 amps of electricity to the hydrogen gas cloud. This fusion is the force that holds the sun together.

It is stated that such an experiment will not make the world the new sun of the solar system, but it can pave the way for cheap and clean energy. The challenge for scientists is to find a way to do this safely.

China announced that it is conducting a new experiment

China’s Hefei Institute of Physical Sciences is pursuing methods for nuclear fusion that go beyond just splitting atoms and creating power by combining nuclei. In other words, scientists are trying to “fit the sun in a box.”

With the Advanced Superconducting Tokamak Experiment, scientists at Hefei are trying to create an “artificial sun,” that is, a constant temperature as high as the sun. In this context, a new experiment was carried out.

An investment of nearly $900 million was made for the ring-shaped machines called a tokamak, where these experiments were produced. At extremely high temperatures, the Tokamak boils hydrogen isotopes into plasma and combines them to release energy.

China, which has been conducting fusion research since 1958, emphasizes that international cooperation is more important than the competition at this stage. China is a member of the “giant” nuclear fusion project ITER, which is being built in France. The project under construction in France has a budget of 10 billion euros.

China’s responsibility for this project is to produce the components needed for ITER to hold magnetic and withstand temperatures up to 100 million degrees Celsius. ITER, which plans to produce the first plasma in 2025, plans to build a sample reactor that will produce 500 megawatts of energy with 50 megawatts of power.

A new study has uncovered a new way of applying advanced artificial intelligence to cool buildings using renewable energy.

From the Oman Ministry of Higher Education, Research and Innovation, Dr. The research study, led by Maryam Zuhair Al Lawati, is published in the journal Scientific Insights. The research discovered an innovative way to apply advanced artificial intelligence techniques and adapt them to cooling buildings in Oman.

According to the Times of Oman report, the technique uses renewable environmental energies through an intelligent system that integrates these technologies through a specific mechanism. The system, designed by artificial intelligence, estimates the volume and amount of cooling required for the building in summer and winter, and the control system operates the heating system according to the building’s needs, according to the estimates.

Dr. Maryam stated that the idea for the research arose because of the importance of utilizing the renewable energies available in Oman. The research also aims to solve the persistent and persistent problem of refrigeration and air conditioning buildings. According to the studies carried out within the scope of the research, the solar energy used to cool the buildings runs the thermal air conditioner that provides energy to cool the building. Heat is reduced by transferring energy to the ground and utilizing land and geothermal energy.

Dr. Maryam explained that the study findings show that Oman’s buildings rely entirely on electrical energy to cool 100 percent, while the study proved that when solar-based thermal energy is introduced, electrical energy use can be reduced from 100 percent to 23.6 percent per year. The research also showed that the role of geothermal energy is small compared to the percentage of solar energy use, while it was stated that solar energy should be used efficiently in this area.

Continuing on the route it started from Spain on the highways of Europe, a custom-built caravan called Stella Vita traveled about 2000 kilometers.

There is an important feature that distinguishes Stella Vita, which means “star of life” in Italian, from other caravans. This trailer never took a break to store gas, hydrogen, or electricity. Because Stella Vita gets the fuel it needs from the solar panels on it.

Developed by 22 students at the Netherlands’ Eindhoven University of Technology, “Stella Vita” is defined as a “self-sufficient house on wheels”. Because inside this trailer, there are all the accessories and rooms that should be in a house, such as a kitchen, bathroom, toilet, double bed, and sofa.

A young team named Solar Team Eindhoven 2021 designed the trailer, which was developed with financial assistance from sponsors. The vehicle, whose testing phase was completed in July, received the necessary permits in September to be able to drive in Europe.

Tijn Ter Horst, 21, one of the young members of the team that brought the project to life, said: “Our aim is to inspire the public and the world vehicle market for a “more sustainable life”. We wanted to show people and companies that life is already possible without harming nature.” says.

Solar panels, wind turbines, hydrogen mechanisms, hydroelectric power plants, and systems that generate electrical energy from sea currents and waves…

While the 2021 United Nations Climate Change Conference (COP26) started in Scotland, the solar panels developed in France and reached the stage of mass production are at the point of breaking new ground in sustainable energy.

Manufactured by Maxeon Solar Technologies, these panels are thinner than a pencil and half the weight of other rooftop solar panels. Thanks to this technology, commercial businesses and houses that cannot be installed with solar panels on their roofs due to excessive weight will be able to benefit from sustainable energy by using solar energy.

Solar panels are the easiest and least expensive to install among other sustainable energy systems. For this reason, many homes and businesses prefer electricity generation via solar panels instead of other systems.

Thanks to the electricity obtained from solar panels, 75 million barrels of oil and 35 million tons of carbon dioxide gas per year are prevented from entering the atmosphere.

Currently, there are very thin solar panels on the market that can be portable or attached to the wall of houses, but this new product produced by French Maxeon has a high electricity generation capacity in a minimum area and is the thinnest solar panel in the world in its field.

Many solar panels on the market currently produced cannot be installed on the roofs of factories, warehouses, workplaces, and some houses, which have very heavy and wide roofs. These thin panels produced by Maxeon are capable of starting a new era in the field of generating electricity from solar energy.

Why do we need lighter solar panels?

The energy spent in houses and apartments, which are the living spaces of people, causes 28 percent of global warming in the world. In addition, solar panels cannot be installed on the roofs of at least 40 percent of commercial buildings due to their weight.

Lightweight solar panels are especially important in terms of being applied to commercial buildings such as factories, warehouses, and workplaces. These new solar panels do not use metal frames and heavy glass surfaces. In addition, the adhesive system that does not require a shelf is another factor that reduces the weight considerably.

When all these are combined, a system that weighs 6 kilograms per square meter and is approximately 60 percent lighter than normal solar panels emerges.

According to research by Maxeon Solar Technologies, only the European market has at least one year of the unoccupied market with lightweight roof systems waiting for solar panels to be installed.

The spokesperson of the company said in a statement that the new design they developed is largely advantageous due to the supply chain, distribution, and rapid assembly.

“This new technology solar panels weight, volume, production and shipping costs are very low. Especially large companies and small business owners can reach their zero-emission targets much faster thanks to these panels.

Maxeon solar panels are manufactured at its headquarters in Porcelette, France, on the Luxembourg-Germany border, and willfully enter the European Union market in 2022.

Glasgow Airport has unveiled its largest solar power plant plan under the airport, as part of its commitment to decarbonize its infrastructure and reach net zero by the mid-2030s.

Glasgow Airport operator AGS Airports said in a statement that the planned 30-acre ground-mounted solar power plant could generate enough power for Glasgow Airport, the airport campus, and neighboring businesses.

While the 15 MW capacity solar power plant is planned to be operational by the summer of 2023, AGS Airports CEO Derek Provan said: “All of our electricity is purchased from 100 percent renewable sources since 2018, but the creation of the solar power plant at Glasgow Airport, It will enable us to produce enough clean energy for both the airport and our neighbors.”

Expressing that AGS has the opportunity to become a test environment for hydrogen and electricity flights, Provan stated that the solar power plant will provide the ability to provide future proof for the increase in electricity demand.

Saying that they will start a green car program for the electrification of airport vehicles, Provan said, “All these will require electric vehicle charging infrastructure. We need to anticipate these changes, and the actions we take today will enable us to meet both the demands of the future and our net zero goals.” said.

Extracting 250 thousand tons of salt from its basins every year, Kenya is one of the leading salt producers in East Africa. Kenya-based companies have managed to reduce their carbon footprints by 25 percent, thanks to their cooperation with Japan.

One of these companies, Krystalline Salt, works with one of Kenya’s largest industrial solar systems. This solar power plant, funded by Japan, provides 1.6-gigawatt hours of clean electricity per year. This makes it possible for the company to overcome the instability of local network supply.

The ecological solution to power cuts

Emphasizing that the biggest problem of the company is energy instability, Dinesh Shikotra, General Manager of Krystalline Salt, said, “We can experience up to five power outages a day, which hinders our production. As a result, we cannot meet the demand”. said

The instability of the grid was forcing the company to invest in polluting and expensive generators until 2016 when the solar power plant was built.

However, Shikotra stated that thanks to Japan, they managed to overcome this problem:

“Using solar energy was actually our dream. We learned about the agreement with the Kenyan and Japanese Governments on the Joint Credit Mechanism. Working closely with them, we were able to get a grant to install this magnificent solar plant here.”

The company’s production capacity has increased

The Joint Credit Mechanism, bilateral cooperation between Africa and 17 other developing countries, is a carbon market mechanism launched in 2013 under Article 6 of the Paris Agreement. It enables Japan to share technologies and resources that facilitate zero carbon emissions worldwide.

The Krystalline Salt solar power plant has enabled the company to increase its production capacity and save on its electricity bill. Some of these savings were invested in social activities such as giving scholarships to students.

Shikotra spoke about the benefits of solar energy:

“Since the establishment of this power plant in 2016, we have saved about 5,000 tons of carbon emissions. We have created more jobs for the local people here, and that has been really positive growth for us.”

IFRI-SOL the Tunisian photovoltaic panels producer with a production capacity of 200 MW and soon 400 MW has finalized the delivery of the 16 MW for a solar power plant in Turkey (Izmir) and it is also preparing to finalize the participation as a panel manufacturer in other plants solar in the same country.

To develop better its strategies, Ifrisol will participate as exhibitor in the most interesting fair in this country which is Solarex Istanbul between 05/04/2018 and 07/04/2018 and presents its current projects including the opening of a factory in Turkey intended for partners who prefer to buy the Ifrisol panel locally with a capacity of 100Mw; decision made by the CEO Mohamed ZROUGA

Now with significant production capacity and product diversification and also the integration of the new PERC technology IFRI-SOL will become a major player in the global renewable energy market.